!
!

Gleichspannungswandler

    

Ein Gleichspannungswandler, auch DC-DC-Wandler genannt, engl. DC-DC Converter, bezeichnet eine elektrische Schaltung welche eine am Eingang zugeführte Gleichspannungen in eine Gleichspannung mit höherem, niedrigerem oder invertiertem Spannungsniveau umwandelt. Die Umsetzung erfolgt mit Hilfe eines periodisch arbeitenden elektronischen Schalters und einem oder mehrerer Energiespeicher. Gleichspannungswandler zählen zu den selbstgeführten Stromrichtern. Im Bereich der elektrischen Energietechnik werden sie auch als Gleichstromsteller bezeichnet.

Die zur Zwischenspeicherung der Energie benutzte Induktivität (induktiver Wandler) besteht aus einer Spule oder einem Wandler-Transformator. Im Gegensatz dazu werden Wandler mit kapazitiver Speicherung (kapazitiver Wandler) als Ladungspumpen bezeichnet. Ladungspumpen werden eingesetzt, wenn entweder – wie in integrierten Schaltungen – keine Induktivitäten vorhanden sind, oder wenn so wenig Ausgangsleistung erforderlich ist, dass sich der Einsatz der teuren Spulen gegenüber den billigen Kondensatoren nicht lohnt.

Anwendungen:

Gleichspannungswandler finden sich als ein Teil in Schaltnetzteilen, mit denen Verbraucher wie PC-Netzteile, Notebooks, Mobiltelefone, Kleinmotoren, HiFi-Geräte uvm. betrieben werden. Die Vorteile gegenüber Linearnetzteilen liegen im besseren Wirkungsgrad und geringerer Wärmeentwicklung. Vor allem ersteres spielt bei der Wandlung einer Batteriespannung eine große Rolle, da die Lebensdauer der Batterie bei einem Schaltnetzteil wesentlich höher liegt: Bei einem linearen Spannungsregler oder einem Vorwiderstand hingegen wird die überflüssige Spannung einfach "verheizt". Die beim Schaltnetzteil auftretenden Schaltverluste sind demgegenüber zu vernachlässigen.

Neben seinem Zweck als Spannungswandler dient ein getakteter Spannungssteller auch gleichzeitig als Filter, um besonders bei Hochleistungsanwendungen den negativen Einfluss auf das Stromnetz (sog. Netzrückwirkung) so gering wie möglich zu halten Ein Beispiel ist die aktive Leistungsfaktorkorrektur (PFC).

DC-DC-Wandler werden auch als vollständig gekapselte Wandlermodule angeboten, welche teilweise für die direkte Bestückung auf Leiterplatten vorgesehen sind. Die Ausgangsspannung kann je nach Bauart kleiner, gleich oder größer als die Eingangsspannung sein. Am bekanntesten sind die Baugruppen, welche eine Kleinspannung auf eine galvanisch getrennte Kleinspannung übersetzen. Die gekapselten DC-DC-Wandler werden für Isolationsspannungen von 1,5 kV bis über 3 kV angeboten und dienen der Stromversorgung kleiner Verbraucher in Gleichspannungsnetzen wie z.B. an 24 V in Industrieanlagen oder an 48 V in der Telekommunikation oder Bereich elektronischer Baugruppen beispielsweise 5 Volt für Digitalschaltungen oder ±15 Volt für den Betrieb von Operationsverstärkern.

Gleichspannungswandler für hohe Ausgangsspannungen (z.B. Elektronenblitzgerät) heißen auch Transverter.

In der elektrischen Energietechnik und Antriebstechnik werden Gleichstromwandler als Gleichstromsteller bezeichnet. Die Unterschiede betreffen primär den Einsatz und den Leistungsbereich. Als Schalter, im Bereich der Energietechnik auch als Ventile bezeichnet, kommen dabei Leistungs-MOSFET, IGBTs und Thyristoren zum Einsatz. Gleichstromsteller werden in diesem Anwendungsgebiet auch als Kombination in Form des Zwei- oder Vierquadrantensteller eingesetzt. In Anlehnung an diese Terminologie bezeichnet man den einfachen Gleichstromsteller als Einquadrantensteller.

   

Über MPP-Kerne

                                               

Pulver der Legierung 79-81% Nickel, 20% Eisen, 2-4% Molybdän werden ebenso mit einem hochtemperaturfesten Binder beschichtet und in einem Werkzeug in Form gepresst. Nach dem Entgraten wird ein Glühprozess angeschlossen. Ein nachfolgender Entgratungs- und Beschichtungsprozess schließt die Fertigung ab.

Die erreichbaren Permeabilitäten liegen bei 14 - 550. Der am meisten genutzte Permeabilitätsbereich liegt bei 60 - 173. Sättigungswerte von Bs = 0,75 T werden erreicht. Der Temperaturkoeffizient der Permeabilität liegt je nach Typ zwischen 25 und 180 ppm/°C.

Kernformen

Folgende Standardformen sind am Markt erhältlich: Ringkerne (häufigste Form, meist isolierstoffumhüllt), E-Kerne, EF-Kerne, EM-Kerne, U-Kerne, Topfkerne, Garnrollenkerne, Stäbe.

Aus diesen Pulverwerkstoffen werden beispielsweise Ringkerne mit einem Außendurchmesser von ca. 4 – 78,9 mm hergestellt. Durch die notwendigen Presskräfte gibt es unabhängig von der Kernform Volumenbeschränkungen, die bei etwa 350 cm3 liegen.

Anwendungen

Kerne aus Pulververbundwerkstoffe werden bevorzugt für Anwendungen gewählt, bei denen sich die Permeabilität mit hohen DC-Aussteuerungen nicht verändern darf. Durch die relativ hohen elektrischen Widerstand bieten sie Vorteile bei Leistungsanwendungen mit hohen Frequenzen. Bevorzugt werden u.a. Entstördrosseln, Speicherdrosseln und PFC-Drosseln mit diesen Kernen aufgebaut, weniger geeignet sind sie für Transformatoren und Übertrager-Anwendungen.

 

Kennlinie MPP-Kerne

  

Für Bauelemente mit hohen technischen Anforderungen bieten diese Werkstoffe die ideale Basis. Durch extrem niedrige Verluste und sehr hohe Aussteuerbarkeit lassen sich selbst für hohe Ströme sehr kleine Bauformen realisieren. Dabei bietet auch hier das weiche Sättigungsverhalten der Pulverkerne einen großen Vorteil gegenüber den Luftspaltkernen. Neben den bekannten Ringkernabmessungen sind speziell für Kool Mµ-Werkstoffe ab sofort auch E-Kerne lieferbar.

 

Eigenschaften MPP-Kerne

*    Legierung aus ca. 80% Nickel, 20% Eisen

*    Sehr niedrige Eisenverluste

*    Hohe Gleichstromaussteuerbarkeit

*    Sättigungsinduktion um 0,7 Teslar

*    Gute Temperaturstabilität

*    10 verschiedene Permeabilitäten 14….550µ

*    29 Kerngrößen von OD 4.19.78.9 mm (Außen)

Anwendungen

*    Speicherdrosseln

*    Drosseln mit hoher Güte

*    Drosseln mit hohem Stromrippel

*    Sperrwandler

 

 

Über High-Flux--Kerne

    

Diese Kerne sind ein Abwandlung der MPP-Kerne mit einer anderen Materialzusammensetzung. Pulver der Legierung 50% Nickel und 50% Eisen wird nach dem oben beschriebenen MPP-Prozess verarbeitet. Die erreichten Permeabilitäten liegen bei 14 - 160. Durch den höheren Eisenanteil werden Sättigungswerte von Bs = 1,5 T erreicht.

Kernformen

Folgende Standardformen sind am Markt erhältlich: Ringkerne (häufigste Form, meist isolierstoffumhüllt), E-Kerne, EF-Kerne, EM-Kerne, U-Kerne, Topfkerne, Garnrollenkerne, Stäbe.

Aus diesen Pulverwerkstoffen werden beispielsweise Ringkerne mit einem Außendurchmesser von ca. 4 – 78,9 mm hergestellt. Durch die notwendigen Presskräfte gibt es unabhängig von der Kernform Volumenbeschränkungen, die bei etwa 350 cm3 liegen.

Anwendungen

Kerne aus Pulververbundwerkstoffe werden bevorzugt für Anwendungen gewählt, bei denen sich die Permeabilität mit hohen DC-Aussteuerungen nicht verändern darf. Durch die relativ hohen elektrischen Widerstand bieten sie Vorteile bei Leistungsanwendungen mit hohen Frequenzen. Bevorzugt werden u.a. Entstördrosseln, Speicherdrosseln und PFC-Drosseln mit diesen Kernen aufgebaut, weniger geeignet sind sie für Transformatoren und Übertrager-Anwendungen.

 

Kennlinie High-Flux-Kerne

    

Für Bauelemente mit hohen technischen Anforderungen bieten diese Werkstoffe die ideale Basis. Durch extrem niedrige Verluste und sehr hohe Aussteuerbarkeit lassen sich selbst für hohe Ströme sehr kleine Bauformen realisieren. Dabei bietet auch hier das weiche Sättigungsverhalten der Pulverkerne einen großen Vorteil gegenüber den Luftspaltkernen. Neben den bekannten Ringkernabmessungen sind speziell für Kool Mµ-Werkstoffe ab sofort auch E-Kerne lieferbar.

 

Eigenschaften High-Flex-Kerne

*    Legierung aus 50% Nickel, 50% Eisen

*    Hohe Speicherenergie

*    Sehr hohe Gleichstromaussteuerbarkeit

*    Sättigungsinduktion 1.5 Teslar

*    6 verschiedene Permeabilitäten 14…160µ

*    27 Kerngrößen von              OD 6.99mm….78.9mm (Außen)

Anwendungen

*    Speicherdrosseln

*    Drosseln mit hoher DC-Aussteuerung

*    Filterdrosseln

Über Kool-Mµ-Kerne (Sendust-Kerne)

Kool-Mµ-Kerne (Sendust-Kerne)

Diese in Japan um 1930 entwickelte Legierung aus Silizium, Aluminium und Eisen wird u.a. auch als Pulverwerkstoff verarbeitet. Die Sendust-Zusammensetzung Fe Si 9,6 Al 6,0 erreicht eine sehr geringe Magnetostriktion. Der Fertigungsprozess erfolgt ähnlich wie beim MPP-Kern.

Man erreicht Permeabilitäten von μ = 26-125. Sättigungswerte von Bs = 1,05 T (Teslar) werden erreicht.

Durch die preiswerteren Einsatzmaterialien sind Kool-Mµ-Kerne (Sendust-Pulverkerne) billiger als MPP und High Flux-Kerne. Die Verluste liegen über denen von MPP aber unter denen von High-Flux und Eisenpulverkernen. Die niedrige Magnetostriktion führt zu einen sehr geringen Geräuschentwicklung im Betrieb.

Kernformen

Folgende Standardformen sind am Markt erhältlich: Ringkerne (häufigste Form, meist isolierstoffumhüllt), E-Kerne, EF-Kerne, EM-Kerne, U-Kerne, Topfkerne, Garnrollenkerne, Stäbe.

Aus diesen Pulverwerkstoffen werden beispielsweise Ringkerne mit einem Außendurchmesser von ca. 4 – 78,9 mm hergestellt. Durch die notwendigen Presskräfte gibt es unabhängig von der Kernform Volumenbeschränkungen, die bei etwa 350 cm3 liegen.

Anwendungen

Kerne aus Pulververbundwerkstoffe werden bevorzugt für Anwendungen gewählt, bei denen sich die Permeabilität mit hohen DC-Aussteuerungen nicht verändern darf. Durch die relativ hohen elektrischen Widerstand bieten sie Vorteile bei Leistungsanwendungen mit hohen Frequenzen. Bevorzugt werden u.a. Entstördrosseln, Speicherdrosseln und PFC-Drosseln mit diesen Kernen aufgebaut, weniger geeignet sind sie für Transformatoren und Übertrager-Anwendungen.

 

Kool Mµ-Kerne (Sendust-Kerne)

        

Für Bauelemente mit hohen technischen Anforderungen bieten diese Werkstoffe die ideale Basis. Durch extrem niedrige Verluste und sehr hohe Aussteuerbarkeit lassen sich selbst für hohe Ströme sehr kleine Bauformen realisieren. Dabei bietet auch hier das weiche Sättigungsverhalten der Pulverkerne einen großen Vorteil gegenüber den Luftspaltkernen. Neben den bekannten Ringkernabmessungen sind speziell für Kool Mµ-Werkstoffe ab sofort auch E-Kerne lieferbar.

Eigenschaften-Kool-Mµ-Kerne

*    Legierung aus 85% Eisen, 9% Si, 6% Al

*    Niedrige Eisenverluste gegenüber Eisenpulver

*    Sättigungsinduktion um 1 Teslar

*    Hohe Gleichstromaussteuerbarkeit

*    5 verschiedene Permeabilitäten 26 – 125 µ

*    30 Kerngrößen von OD(Außen) 4.19mm – 78.9mm

Anwendungen

*    Speicherdrosseln

*    PFC-Drosseln

*    Filterdrosseln

Kennlinie Kool-Mµ-Sendust-Kerne

   

Über Balune

                                       
  

Ein Balun (von engl. balanced-unbalanced) ist in der Elektrotechnik und Hochfrequenztechnik ein Bauteil zur Wandlung zwischen einem symmetrischen Signal und einem asymmetrischen Signal.

Symmetrierglied 60 Ohm / 240 Ohm für den Frequenzbereich 50…250 MHz mit Ferrit-Doppellochkern, Breite etwa 15 mm

Vor allem in der Hochfrequenztechnik wird auch die Bezeichnung Symmetrierglied verwendet. Balune arbeiten in beide Richtungen, daher gibt es den Begriff „Asymmetrierglied“ nicht.

Symmetrisch bedeutet, dass zwei gegen Massepotential gleichgroße gegenphasige Wechselspannungen vorliegen, beispielsweise bei Zweidraht-Leitungen und symmetrischen Antennen. Das asymmetrische Signal (eine Leitung auf Masse) wird meist mit einem Koaxialkabel übertragen.

Oft wirken Balune auch als Impedanzwandler zur Leistungsanpassung; vor allem in der Audiotechnik dienen Balune auch zur Potentialtrennung.

 

Bitte Lupe klicken